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LOAD-EQUIVALENCE PARAMETERS
FOR DYNAMIC LOADING OF STRUCTURES
IN THE PLASTIC RANGE

by

Carl K. Youngdahl

ABSTRACT

This report examines the solutions to four classical
problems in dynamic plasticity--circular plate under uni-
form pressure, the reinforced circular cylindrical shell
under uniform pressure, the free-free beam with a central
concentrated force, and the circular cylindrical shell with a
ring load--to determine the effect of pulse shape on final
plasticdeformation. It is found that thereis a strong depend-
ence on pulse shape for pulses having the same total impulse
and maximum load; however, the effect of the pulse shape is
virtually eliminated if the pulses have the same totalimpulse
and effective load. The effective load is defined as the im-
pulse divided by twice the mean time of the pulse, where the
mean time is the interval between the onset of plastic defor-
mation and the centroid of the pulse.

I. INTRODUCTION

When experiments are performed to determine the plastic deforma-
tion of a structure produced by a dynamic loading that exceeds the yield
load only for a short interval, it is important to know the effect of the pulse
shape on the final deformation. This is particularly true in reactor accident
simulations, where it is impossible or impractical to reproduce the actual
loading conditions in an out-of-pile experiment.

Symonds,l inhis treatment of a free-free beam acted on by a con-
centrated dynamic load, concluded that the final deformation for any load
shape was essentially dependent only on the impulse and peak load, within
an error of about 15%. However, his conclusion was based on loadings
greatly in excess of the yield load, when the shape of the load is not impor-
tant; the errors for loadings that produce only small plastic deformation
are much larger. Hodge? showed that final deformation of a reinforced
circular shell under uniform dynamic pressure was strongly dependent on
the pulse shape. Perzyna® extended the solution of Hopkins and Prager?
for a circular plate under uniform dynamic pressure with a rectangular



pulse shape to a more general class of pulse shapes and concluded that the
influence of the shape on the final deflection was small. However, his con~
clusion was based on results for shapes that were close to the rectangular
pulse in form. The analysis of Eason and Shield”® for a long circular shell
acted on by a dynamic ringload was extended by the author®7 to arbit.rary
pulse shapes. It was found that although the peak load and impulse did not
provide an accurate means of eliminating the effect of the pulse shape on
the final deformation, an effective load could be determined which, together

with the impulse, essentially collapsed the final deformation results onto

one curve.

It will be shown here that the impulse and an effective load can be
used to determine the final plastic deformation for each of the above prob-
lems. For a load £(t), which may be a pressure, concentrated force, ring
load, etc., the associated total impulse is given by

1
I= ffﬁ(t) dt, (1)

Ly

where t, and t; are the times when plastic deformation begins and ends.
The effective load is defined by

I
S ST 2
i 2tmean (2)

where tmean is the location of the centroid of the pulse and is given by

=
B N Tl ft (t-ty) £(t) dt. (3)
b

The time t, when plastic deformation begins is when the dynamic load first
reaches the static yield load £y and is consequently a known quantity. The
time tf when plastic deformation ends is not known a priori, but it can be
shown that FairEnel

I= ﬁy(tf'ty), (4)

from which tf can be found. Relation 4 is exact for the free-free beam,
reinforced-circular-shell, and circular-plate problems and is an approxi-
mation for the circular shell with a ringload. Each of the parameters I
and £, depends only on integrals of the loading and is insensitive to small
perturbations in pulse shape. This is encouraging for experimental appli-
cations because, by contrast, peak loads and pulse durations are difficult
to reproduce and measure accurately.



In what follows, the problems of the circular plate acted on by a
uniform pressure, the reinforced circular shell under uniform pressure,
the free-free beam with a concentrated central force, and the long circular
shell with a ringload will be discussed briefly.* For each problem, the
maximum plastic deformation divided
by the square of the impulse is plotted
as a function of the peak load and ef-
fective load for the standard pulse
shapes given in Fig. 1b-f. It will be
seen that there is a dependence on

Z(1) Z(1)

' i
181 SENERAL AEVERERTANCEEAR the pulse shape evident in the figures

where the peak load is the parameter,
20 1) but that this dependence is essentially
eliminated if the effective load is
used; i.e.,

Wos = PH(Le), (5)
(c) LINEAR DECI:Y (d) ExPONENTlALLECAv
where W, ¢ is the maximum final
deformation and f is a function that
(1 xm depends on the problem configuration.
Closed-form solutions for the general
pulse shape of Fig. la are available
for the circular-plate and reinforced-
T circular-shell problems. In these
cases, it is shown analytically that
relation 5 is exact for small values
of (Ce - Ey)/.ﬁy and is asymptotically
true for large values. The figures indicate that the error in the approxi-
mation in the intermediate range is small.

t
(e) TRIANGULAR (f) SINE

Fig. 1. Pulse Shapes. ANL Neg. No. 113-3102.

The material in each of the four problems is assumed to be rigid
and perfectly plastic, and idealized yield functions are used. The use of
such assumptions has proven to be very fruitful in static limit-load analy-
sis, where the bounding theorems provide a means of bracketing the results
corresponding to a more realistic material behavior. Because there are no
analogous theorems for dynamic plastic deformation, the application of the
idealized assumptions on material behavior is open to question. The experi-
mental verification or rejection of the impulse and effective load as correla-
tion parameters for final plastic deformation would alsoimply the verification
or rejection of the usefulness of the rigid, perfectly plastic material model
for dynamic analysis.

*Details of the analyses may be found in the references cited for each problem and the appendixes of this
report,



II. CIRCULAR-PLATE PROBLEM

Consider a thin circular plate of radius R and surface density ,
which is loaded by a uniform pressure P(t) as in Fig. 2a. Let the plate be
made of a rigid, perfectly plastic material that obeys the Tresca yield con-
dition of Fig. 3a, where My is the radial bending moment and Mg is the
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Fig. 2. Problem Configurations: (a) Circular plate loaded by a uniform pressure; (b) Reinforced circular
cylindrical shell loaded by a uniform pressure; (c) Free-free beam loaded by a concentrated force;
and (d) Circular cylindrical shell loaded by a ring of concentrated force. ANL Neg. No. 113-3113.
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Fig. 3. Yield Conditions: (a) Tresca yield condition for circular-plate problem; and
(b) Limited-interaction yield condition for circular-cylindrical-shell problems.
ANL Neg. No. 113-3108 Rev. 1.




circumferential bending moment. The exact solution to this problem was
presented by Hopkins and Prager® for a rectangular pulse shape (Fig. 1b).
Perzyna® considered a pulse that rose instantaneously to its maximum and
decayed thereafter. These results are further extended in Appendix A to
obtain a closed-form solution for the general pulse shape of Fig. la where
the rise to the peak value need not be instantaneous.

A. Load Range Py =P, =Py,

If the peak pressure Pp,,y is greater than the static yield pressure
Py, given by

6M,
DL = , (6)
4 Rz

and less than the pressure P} which initiates a moving hinge circle p(t),
where

Py = 2Py, (7)

the final plastic displacement at the plate center is

2 12
Wi = b (- 5%) @

The total impulse I (per unit area) and the effective pressure P are

defined by
te i -
I :f P(t) dt
ty
and >, (9)
i 3
4 2tmean )
with
1[4
tmean =7 [ (t-ty) P() at. (10)
t

o

Definitions 9 and 10 are the same as Eqs. 1-3 with £(t) specialized to P(t).

Consequently, for loads in the range Py = Py = 2Py, relation 5 is exact.
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The time tf when the deformation ends is determined by the solution

of

ke
Py(tf-ty) = f P(t) dt. (11)
Py

The effective pressure is shown in Fig. 4 as a function of the maxi-
mum pressure for the standard pulse shapes of Fig. 1b-f under the restric-
tion that the time t; at which the plastic deformation ceases can be found

from Eq. 11.

4 [ [ I I
als =1l
5 = RECT, 7
o> LIN, B &
ST Effective Pressure as a Function of Maxi-
& S mum Pressure if I= Py(tf-ty). ANL Neg.
3 TRI £ No. 113-3104.
EXP.
o e
; | l | | l
| 2 3 4 5 6 7
Pmux/Py

B. Load Range P, ., > Pp

At t;,, when P first attains the value Py given by Eq. 7, a hinge
band of radius p(t) begins to move out from the plate center and reaches
a maximum pPmax at t., .y, Where P(tmax) = Pmax- The hingelbandithien
moves back toward the plate center, arriving there at tc, which is found
from

t

Bty ) fc P(t) dt. (12)
iy

HoT =t E= AN o) Siskfioum difirom

P(t)[R - p(t)P[R + p(t)] = 2PyR. (13)



For tyax =t=t., p(t)is the solution of

/‘t 2PyR¥t - B(p)]
B

P(r) dr =

) R+ AR- o e
with
2PyR3
B(p) = P"(m) , 0=p=pmax, tb=p(p)=tmax (15)

where P! is the inverse of P(t) in the interval tp =t =tmax. The time
tg is still given by the solution of Eq. 11. Defining

te
v R0 W
and >, (16)
te
P = (%) [2 /tb (t-tp) P(t) dt]}

analogous to the definitions of I and P,, we have for the final plastic
deformation at the plate center

2 *\2
a4 G- 3]

Note that it is not necessary to solve the cumbersome transcendental
Eqgs. 13 and 14 for p(t) in order to find Wy(tf).t Since

el B =P as P (B ra, (18)

Eqgs. 17 and 7 yield

W(t)-’I—z(}-- Py)asP/P - o, (19)
o AT TR T iR

The final plastic deformation at the center of the plate divided by
the square of the impulse is plotted as a function of Ppy3x in Fig. 5 and as
a function of P, in Fig. 6 for the pulse shapes shown in Fig. 1b-f. The
figures indicate that there is a significant dependence on the pulse shape
if the maximum pressure is used as a parameter, but that this dependence
almost disappears if P, is used. The spread in the curves for Py .
close to P, is especially large; this is perhaps the range of greatest
practical interest.
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Fig. 5. Circular-plate Problem: Dependence of Fig. 6. Circular;plate Problem: Dependence of
W(;.(tf)/l2 on Py for Various Pulse Wq(tf)/I% on Pe for Various Pulse
Shapes. ANL Neg. No. 113-3111. Shapes. ANL Neg. No. 113-3203.

An interesting side result is that Eq. 11 has the interpretation that
the average value of the load over the duration of plastic deformation is
the yield load, and Eq. 12 has the interpretation that the average value of
the load over the time interval in which the hinge circle moves is the
initiating load for this motion.

III. REINFORCED CIRCULAR CYLINDRICAL SHELL

Consider an infinitely long circular cylindrical shell, reinforced by
equally spaced reinforcing rings and subjected to a time-dependent, uni-
formly distributed radial pressure (Fig. 2b). Let A, H, and Oy be the
shell radius, thickness, and yield stress, respectively, and 2L be the
distance between reinforcing rings. Only the typical half-bay 0 =z =L
need be considered. Assume the shell material is rigid and perfectly
plastic and obeys the limited interaction yield condition shown in Fig. 3b,
where Ng and My are the circumferential stress resultant and axial
bending stress resultant across the shell thickness. Hodge® obtained a
closed-form solution to this problem for pulses that rise instantaneously
to a maximum and decay thereafter. This result is broadened in Appendix B
to include a closed-form solution for the general pulse shape shown in
Fig. la.

The static yield pressure Py is given by

AH ;
Py = Py <1+?>, (20)
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where
oyH

Py = ——. (21)

The pressure Pp at which a hinge band would begin to form in the vicinity
of z = L is given by

Py = 3Py - 2P, (22)

A. Load Range Py =Pax=FPp

For peak loads between P, and P, hinge circles are formed at
z = 0 and z = L at the time ty when the yield pressure is first attained.
The maximum radial velocity Vi, and radial displacement Wy, occur at
z = L. Corresponding to relation 4, the time tf when the deformation ends
is the solution of

t
Py(tr-ty) = ffP(.t) dt (23)
iy

which results from
Vi(ty) = 0, g >ty (24)

The final plastic displacement at the bay midpoint is

A Py) : 2
WL(tf) = ‘m "P—e , ( 5)

where the impulse I (per unit area) and the effective pressure 120 s
defined as in Eqs. 9 and 10, and pu is the surface density of the shell
material. As in the circular plate solution, for loads in the range

Py = Pmax < Pp, relation 5 is exact.

B. Load Range P, ., > Py

A hinge band begins to form in the region {(t) =z =1L at t = t
when P first attains the value Pp,. The maximum width of the band is
attained at t = t; ;5 when the pressure reaches its peak value. The width
then decreases until £(t) = L at t = t., where t. is again found from
AP ST et =t s (1) 15" fornd Fr o

LA(t)[P(t) - Po] = 3LA(Py - Po). (26)
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For tax =t=tc, {(t)is determined from the solution of
i
czf [P(r) - Po] d7 = 3(Py - Po)[t - ()] L? (27)
B(£)

with

B(L) = P"[Po+ 3(Py - P) z—:] Emax=C=L. tmax=p(l)=t,  (28)

where P! is the inverse of P(t) in the interval tp =t =ty,;%x. Using
Vi,(tg) = 0, the solution of Eq. 23 again is found to determine tf. Letting
IS I*, and P; be defined as for the circular plate problem, we have
that the final plastic deformation at the midpoint between reinforcing rings

R ol I fAEA 1
=== -==] (= - =] 29
vut = L3, - 72) - 3{F) (5 .
As in the circular-plate solution, it is not necessary to solve the awkward
Eqgs. 26 and 27 for the hinge-band motion if only the final maximum defor-

mation is desired. The solutions given by Eqs. 17 and 29 are identical
except for the numerical coefficients. Using relation 18, we have that

B By By Pe
Wi (tf) /JPy<Z-4_Pb-_2pe S (30)

is

so that in the limit, as the effective load becomes very large, we again
arrive at relation 5. The ratio Pb/Py is a function of the shell geometry
only, found from Eqs. 20-22 to be

L s
Bt ot AR (31)
Y I ioeciam

LZ

In the numerical results given here, AH/LZ is taken to be 0.4 as in Ref. 2.

The final plastic deformation of the shell at the midpoint between
reinforcing rings, divided by the square of the impulse, is shown as a
function of P = in Fig. 7 and as a function of P, in Fig. 8 for the pulse
shapes of Fig. 1b-f. As for the circular-plate solution, the curves are
closely bunched if the effective pressure is used as the independent vari-
able, while a strong dependence on the pulse shape is evident if the peak
pressure is used.
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IV. FREE-FREE BEAM

Consider a free-free beam of length 2L loaded at its center by a
time-dependent force F(t), as shown in Fig. 2c. Assume the beam mate-
rial is rigid and perfectly plastic, and let its yield moment be M,. Symonds!
presented numerical results for this problem for the rectangular, trian-
gular, and half-sine pulse shapes of Fig. lb, e, and f, respectively. The
governing equations are derived in Appendix C. Some additional numerical
results for these shapes and for the linear decay and exponential decay
shapes shown in Fig. lc and d are given here.

The yield load Fy at which a plastic hinge appears at x = 0 is
given by

4M,

Ty = o (32)

L5



If F(t) attains the value Fp, where

_ 33
By = 5.7218F, (33)

at some time ty outer hinges form at x = *ép, where

En="0-40391 (34)
As the loading progresses, these outer hinges move through the positions
+£(t) until a time t. when they disappear. A closed-form solution for the
plastic deformation may be obtained for an arbitrary pulse shape if

Fmax = Fh, but, if Fpa, > Fp, only the solution corresponding to a
rectangular pulse is available in closed form.!

A. Load Range Fy=Fmax =Fh

Let Vo(t) and Wy(t) be the transverse velocity and deformation of
the midsection of the beam measured relative to a line through the ends of
the beam.* The governing differential equations for this load range may be
integrated in closed form. The time tf when the motion stops is found from

te
f o) Gie = Fy(tf-ty), (35)
ty

which corresponds to relation 4. The final maximum plastic deformation is

L Fy
i m—Fy(l 52) 5

where the total impulse I and effective force Fe are defined analogous to
Egs. 1, 2, and 3 by

s (37)
(Contd.)

* z :
Eicatge the beam is unsupported, it also has a rigid'body motion. Symonds! takes the angular deforma-
d.f? at the center of the beam as a measure of the plastic deformation. For Fmax £ Fp, 6 and w, (1)
iiter only by a constant factor L; but for Fmax > Fy, the relationship depends on &(t). :



and

te
1
tmean = ff (e - ty) F(t) dt. (Con(t;i'};
ty

Consequently, relation 5 is exact for Fp,x = F},.

B. Load Range Fp,5x > Fp,

In the time interval t, =< t < t}, the differential equations have a
closed-form solution. In the interval t, =t =<t., plastic hinges occur at
*£(t). Let the angular velocity of the beam segment* 0 = x < £ be wq(t),
and the angular velocity of the segment £ < x = L be w,(t). The coupled
nonlinear differential equations to be solved are

dw

d—t° = ?[EF 2LF],

ﬂ ~ 3LF}I

a - V(L-ﬁ)"

dv, 1[ dw,]
=== +€ liLss =1

dt vE dt } (38)
dw,
i B :

and
3t " Yoy-wy L HToep

The time t. is determined from the condition that wy(t.) = w,(tc). This
system of equations is easily solved on a computer. In the time interval

te =t = tg, the governing differential equations have closed-form solutions.

It is shown in Ref. 1, using conservation of momentum, that Eq. 35 holds
regardless of the pulse shape. In other words, even though a closed-form
solution to differential Eqs. 38 cannot be found, relation 4 is again exact.

The ratio Wo(ts)/I?, given by Eq. 36 for F, .. =<F} and by the
computer solution of the differential equations for Fmax = Fy,, is shown
as a function of F,,x and Fe in Figs. 9 and 10, respectively. The
resemblance to the results of the previous two problems is evident.

*Because of symmetry, only the right half of the beam need be considered.

17
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Fig. 10. Free-free Beam Problem: Dependence
of Wo(tf)/l2 on Fe for Various Pulse
Shapes. ANL Neg. No. 113-3202.

Fig. 9. Free-free Beam Problem: Dependence
of Wo(tf)/l2 on Fppax for Various Pulse
Shapes. ANL Neg. No. 113-3110.

V. CIRCULAR SHELL WITH A RING LOAD

Consider an infinitely long circular shell which is axially unre-
strained and loaded by a dynamic concentrated ring load ¥(t) at the cross-
section z = 0 (Fig. 2d). Assume the material of the shell is rigid and
perfectly plastic and obeys the limited-interaction yield condition shown in
Fig. 3b. Eason and Shield® obtained a closed-form solution for the plastic
deformation corresponding to the rectangular pulse of Fig. 1b and gave
numerical results for the triangular pulse of Fig. le. The author®”’ obtained
a numerical solution for arbitrary pulse shapes, including those of Fig. lc,

d, and f.

The static limit load ¥y is given by

3/2
A Aol (39)
¥ AI/Z
where Ty H, and A are the yield stress, thickness, and radius of the
shell, respectively. Because of symmetry, only the half z = 0 of the shell
need be considered. At t = ty, when the yield load is first attained,
plastic-hinge circles appear at z = 0 and z = Cy’ where

Qy = J/AH. ; (40)
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As the loading progresses, the outer hinge circle moves through the
positions {(t). If, at some time tp,

Y(tb)Q(tb) = %chyr (41)

the outer hinge circle begins to broaden into a hinge band occupying the
region £,(t) = z = {,(t). As the load passes through a maximum and then
decreases, the width of the hinge band attains its maximum and eventually
shrinks to a hinge circle again at time tc. Unlike the first two problems
treated here, the occurrence of a hinge band depends not only on the
magnitude of the pulse but also on its shape. For instance, it may be shown
that a hinge band cannot occur for a rectangular pulse®or any other pulse
shape that attains its maximum value instantaneously.6

A. Loading Such That ¥ <3 ¥yly

If Eq. 41 is never satisfied during the deformation, the outer hinge
location £(t) and the radial velocity and displacement at z = 0, Vo(t) and
Wo(t), respectively, are the solutions of the coupled nonlinear differential

equations
i _ 1 .
-l )

dv, g4y- 3Cy
s~ Yyl - h

dt L EZ Cy > (42)
and .
dW,
= = Ve

Y

where pu is the surface density of the shell. The only pulse shape for which
a solution of Eqs. 42 is available is the rectangular pulse.

B. Loading Such That ¥¢ = 3 ¥yLyatt = tp

During the intervals ty =t =ty and t. =<t =<tf when there is no
hinge band, differential Eqs. 42 are applicable. For tp =t =tmax, the
inner edge of the hinge band is given by

¥ L
&ilt) = <y (43)

while Vo(t), Wo(t), and V,(t) (which is defined as V(z,t) at z = ;) are
found from the solutions of the differential equations
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T el B T AR (44)
e\ o i i
CALTE G s
e €1 i Cf Cy ;
(45)
and
dW,
o Ve
An auxiliary function Q(z) is given by
vt
Q) - 5=+t (46)
“y
treating t as a function of €, rather than the reverse. The outer edge of
the hinge band is then given by
(47)

Q(E(t)) = t.

For tyax =t =tc, Eq. 43 no longer applies, but Eq. 46 used with Eqs. 45

yields four relations for €., Vo, V1, and Wy, while ; is still found from

Eq. 47. A closed-form solution for an arbitrary pulse shape is available

for the interval tp =t =t. when the hinge band exists.®

However, since

the solution is awkward to evaluate and there is no corresponding solution
for the initial and final stages of the deformation, it is easier to solve the

entire problem using a standard computer subroutine for simultaneous

differential equations.

The numerical results for the quantity Wo(tf)/l2 are plotted as a
function of ¥, and Y. in Figs. 11 and 12, respectively, for the standard
pulse shapes. The total impulse I (per unit circumference) and the effective

circumferential load Y, are defined analogously to Eqs. 1, 2, and 3 by

te
I = ¥(t) dt,
ty
I
\1/ =
e »
Ztmean

and

(48)

(49)
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VI. CONCLUSIONS

The use of the effective load and total impulse as correlation param-
eters is shown to essentially eliminate the dependence on pulse shape of the
final plastic deformation of four different structural configurations. The ef-
fective load and total impulse are easily determined from pressure-time
measurements because they involve only integrals of the loading and are con-
sequently insensitive to inaccuracies in pressure-transducer measurements.
The material in each of the four problems is assumed to be rigid, perfectly
plastic. If experiments should fail to confirm correlation 5, it would indicate
that the rigid-plastic idealization may not be useful in dynamic plasticity.
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APPENDIX A

Circular-plate Solution for General Pulse Shape

1. Introduction

The dynamic plastic deformation of a simply supported circular
plate subjected to a uniform pressure* with a rectangular pulse shape is
discussed extensively by Hopkins and Prager.4 Their analysis will be
generalized to cover the arbitrary pressure pulse shape of Fig. 14 for
which the hinge-band motion is more complicated. Some of the discussion
in Ref. 4 on yield condition, flow rule, and plastic regimes will be repeated
here to make this presentation reasonably complete.

P(t)

Fig. 14
General Pressure Pulse.
ANL Neg. No, 113-3222.

ty b [ te 1 t

2. Statement of Problem

Under the usual assumptions of the small deflection theory of thin
plates, the equation of motion of the circular plate of Fig. 2a is

rQ

r
3w
l [—P+/.,L atz]r dr, (A.1)

where M,., M¢, and Q are the radial bending moment, circumferential
bending moment, and vertical shear force per unit arc length, respectively,
P is the applied pressure, [l is the mass per unit surface area, and W is
the downward deflection of points lying in the middle surface. The quanti-
ties Mr’ M¢, Q, and W are functions of radius r and time t, while P will
be taken to be a function of time only. Let the plate radius be R, the lateral
velocity of the plate be denoted by V(r,t), and the radial and circumferential
rates of curvature be denoted by K and kg, respectively. Then

% (rMy) - Mg

*Com-oy9 considers a uniform pressure distributed over a central circular region.



(A.2a)

oW
V = gt—,
d%v (A.2b)
K. = - —,
16 arz
and

S oy (A.2c)

T "TF or

The locus of points in M., My space representing all pos.sible yield
states is called the yield locus or yield condition. The Tresca yield con-

dition of Fig. 3a will be used here. The flow rule states that the flow vec-

tor with components k., k4 is in the direction of the outward perpendicular

to the yield locus at the yield state (M, M¢).

The three plastic regimes occurring in the plate under uniform load
are point A, segment AB, and point B of Fig. 3a. From the yield condition
and the flow rule, the conditions on the bending moments and rates of cur-

vature for these regimes are:

Regime A: My = Mg = My, Kr =0, kg = 0; (A.3a)
Regime AB: 0 < My < Mo, Mg = Moy, kp = 0, kg = 0; (A.3b)
Regime B: M, = 0, Mg = Mo, k¢ = -k, = 0. (A.3c)

During the plastic deformation of the plate subjected to uniform

pressure
Mg = M,, OF=SrF =R (A.4)
The simply supported outer edge of the plate is in Regime B; i.e.,
=SV = M= =SOSR (A.5)

For load histories such that no hinge band appears, the center of the plate
is in Regime A, so that

Ml‘ = Mo athr =0 (A.6)

while the remainder of the plate is in Regime AB, which means, using
Egs. A.2 and A.3b, _



o2y v

0<Mr<Mo,m=0, arSO for 0 < r < R. (A.7)

If a hinge band of radius p(t) grows out from the center of the plate, the
entire band is in Regime A so that

*v v
Mr=M°, a—riso,—so fari0i=Rrr="in" (AS)

while the remainder of the plate is still in Regime AB;

2.
0<Mr<M°,-g—r‘z’=o,§—Zso for'p< =< RB. (A.9)

Figure 15 shows the moment and plastic-regime distribution in the plate.

Mist) The initial condition of the
motion is that the plate is at rest
Mo & Mé until time t, when the yield load is

" first reached. Consequently,

V(r,ty) = Wi, e ) =20 (A.10)

y)
Equation of motion A.l1 must

be solved subject to initial conditions
A.10 and boundary conditions and
0 = RB r restrictions A.4-A.7 if there is no

4 hinge band. If a hinge band appears,
Fig. 15. Moment and Plastic -regime Distribution Eqgs. A.6 and A.T are replaced by

in Plate. ANL Neg. No. 113-3223. Egs. A.8 and A.9.

The restrictions on the continuity of My, Mg, W, and their deriva-
tives are discussed in detail in Ref. 4. The arguments will not be repeated
here; the conclusions pertinent to this problem are: W, V, M., and SW/
3r are continuous in r and t, but across a moving hinge circle p(t), the
discontinuity conditions

{ } { } (A.11a)
{aa_‘t’} A %tﬁ {g_:’} -0, (A.11b)

25
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and
{aMr} L Mr} e (A.llc)
ot dt or

must be satisfied. In Eqs. A.11, {f} denotes the discontinuity in f across p.

3. Solution for No Hinge Band (P, = Pp)

Guided by the static limit analysis,8 take the initial velocity distri-

bution as

Wil =3t )5 =5 Vo (T)

?

RE; £ (A.12)

where V, is the velocity at the plate center. The condition in Eqgs. A.5 that
V vanishes at r = R and the conditions on 3°V/3r? and dV/dr in Egs. A.7
are satisfied by Eq. A.12. The substitution from Eqgs. A.4, A.2a, and A l2
into Eqgs. A.1, followed by integration with respect to r, then gives

r(M _M):-—Ir3P+#—r3(2R-r)d&+C(t) (A.13)
o el 5 12R dt i i

Boundary conditions A.5 and A.6 on M, result in

Ci(t) = 0, (A.14a)

dVo 2

T - 5 [B0)-PB, (A.14b)
and

R T [B(t)r? 2 2

2 = Sen Pt s PR R )] (A.l4c)
where the static yield load Py is®
6M0
Py = P (A.15)

The solution of differential equations A.2a and A.14b is, using
Eq. A.12 and initial condition A.10,

3 "
Vo (6= Ef [P(7)-P_] dr, (A.16a)
7 L, y
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t
Wo(t) = f (t-7)P(T) - Py] dT, (A.16b)
t

and

R-r

W(r,t) = Wo(t) R’

(A.l6c)

where Wy(t) is the displacement at the plate center.

Because M, = M, and aMr/Br = 0Oatr = 0 (see Eq. A.1), the con-
dition that M. = M, throughout the region 0 < r < R will be satisfied if

r = 0 is a local maximum of M,; i.e.,
L 0 0 (A.17)
< Oatr = 0, Al
or?

which by Eq. A.l4c is equivalent to

P(t) < 2P (A.18)

v
Define

Py = 2Py (A.19)

as the load at which a hinge band is initiateds The condition that P(t) does
not produce a hinge band is then

B P (A.20)

The plastic deformation ends at time t; when V(r,t) vanishes. By
Eqgs. A.12 and A.l6a, t¢ is found from the solution of

t
ff Bit)idt = Py(tf-ty). (A.21)
ty

Equation A.21 has the interpretation that the average pressure over the
interval of deformation is the yield load.

Define the impulse I per unit area, the mean time t ., of the
pulse, and the effective pressure P, by



(A.22a)

o
- A.22b
t - (t - t,) P(t) dt, ( )
mean - | y
ty
and
: (A.22c)
P = —.
€  2tmean
From Eqs. A.16b, A.21, and A.22, the final plastic deformation at r = 0 is
found to be
Wolts) = i (.Pl> (A.23)
W LPy P,

and W(r,tg) is easily determined from Eqs. A.16c and A.23.

4. Solution for Deformation with Hinge Band (P55 > Pp)

a. Interval ty = = i

The solution given by Eqs. A.l4c and A.16 is applicable up to
the time t,, when the pressure first reaches the value Py, and BZMr/BrZ
0atr = 0. Atty, a hinge circle p(t) separating the region of the plate in
Regime A from the region in Regime AB begins to move out from the

origin.

b. Interval tb = s

The substitution from Eqgs. A.4 and A.8 for My and M,. into
partial differential equation A.l results in the integral vanishing for arbi-
trary r in the region 0 = r = p(t). This implies that the integrand must

be identically zero, or,

oV

b5 = Pl (A.24)

The solution of Eq. A.24 is

t :
uv(r,t) = f P(7) dr + Q(z);" 0= z'=tp(th (A.25)

th



where Q(r) is an arbitrary function determined from the continuity of the
velocity at the edge of the region. Letting Vp(t) be the instantaneous lateral
velocity at the hinge circle, i.e.,

Vp(t) = V(P(t):t)’ (A.26)

Q is found from

t
Q(p) = KV, -f B(T) dT, (A.27)
th

where t is viewed as a function of p rather than the converse.

Since the integrand in Eq. A.l isidenticallyzero for 0 < r < p(t),
the governing partial differential equation for the region p(t) < r < R is,
using Eqs. A.4, A.15, and A.2a,

r
b_ar (rM,) = %PyRZ +f l:—P(t)+,u aa_\t,] r dr. (A.28)
P

Using relations A.9 and A.5, the expression for V(r,t), analogous toEq. A.12
which applies up to t,, will be taken as

R-r

R——p(t)' pr=ar =R = tpdsain= 1., (AZ9)

Sie L= Vp(t)

where t. is the time when the hinge band shrinks to the origin. Integration
of Eq. A.28 with respect to r then gives

v
sl 2 083 i 2 3 mig 3, d P
rM_ = 3 [R Py+(3p -r°) P+(Rr°-3Rp 5 T +2p°) 1 5 (—R-p>:|

+ C,(t). (A.30)

The boundary condition on M,. given in Eq. A.5 and the continuity of
M, atr = p are used to obtain

3 (30 - 4R) R*P
Gyt = 6(R-£)?R+3p) [ p(R—p)Z Y+ (2R +p) P]' (A.31a)
d (¥ R’Py_
E(RJ-O;) © L(R-p)(R+3p) [ R-p)? + (R +2p) jl. (A.31b)

29
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and
i 3 R*Py
R-r 3 2 2 ap a3 L AR GRS e e
N e = -2 (R S R Rr P P N2
T B5r®R-p)(R+3p) ( (R-p)

+ (Rr +2Rp+21p +p%)(x - p)* P,

(A.31c)

<

o =roli =R, tbStftc.
The condition that My should not exceed Mg in the region p =

r = R implies

2
M
oy =0atr = pt. (A.32)
or?
Using Eq. A.31c, this is equivalent to
(A.33)

(R+p)(R-p)* P = 2PyR’, = t=tc.

When the hinge band is initiated, the radius of the hinge circle is zero and
the pressure has the value 2P by Eq. A.19. Consequently, the equality in
= ty. We will hypothesize that the equality con-

expression A.33 holds att =
tinues to hold in the entire interval tj, = t = t .., so that p(t) is determined

by the solution of the cubic equation

2 3
[R+ p(t)][R - p(t)]* = —i%, ty S t= tray. (A.34)

IA

The basis of this hypothesisisas follows: The differentiation of
Eq. A.34 yields

dp 2P-R? dp
dt = (R-p)R+3p) Pz dt’ S

Since dp/dt and dP/dt have the same sign and vanish at the same time,

p(t) attains its maximum when P = Plhax- Equations A.34 and A.35 imply

that the hinge circle is "pushed" out from the origin to its extreme position

as the pressure increases from Pb to PmaX' A value of p less than that

which satisfies Eq. A.34 would cause relation A.33 to be violated. It can

be shown that a solution for the plate deformation obtained by using Eq. A.34

satisfies the differential equations, the boundary conditions, and discon-

tinuity conditions A.1l, and is therefore the correct solution.
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Combining Eq. A.34 with Eq. A.31c gives, using Eq. A.15,

M, R(r +p)(r - 0)*
iyl Ry PETER. G StSbae  (A36)

while Eq. A.31b reduces to

d (Ve ) P

] S A.37

dt \R-p (R -p) ( )
We integrate Eq. A.37 to obtain

' 1 (" _P(r) Vpltn)
Vo(t) = [R-p(t)] I:I ftb B bl dT+R_p(tb)] (A.38)

Since Vp(tb) = Vo(ty) and p(ty,) = 0, we have from Eq. A.l6a that

i-TH
Vp(tb) = Ifty [P(T)-Py] dr. (A.39)

Substituting from Eqgs. A.38 and A.39 into Eq. A.29 gives

{4 t
_ R-r P(T) b
Nilr ) = TR [R ftb pET dT+zft [P(T}—Py] dT:I,

(A.40)

The plate displacement is then found by integrating the velocity and applying
the continuity conditions at th, using Egs. A.l6b,c. The result is

t t

RS (t-7) P(7) b

Wike,t) = iR {R j;b T—PF)— dT+2£ (t-T)[P(T)—Py] d7},
v

PST =R, t St=t ... (A.41)
We returnnow to the region 0 = r = p inorder to determine Q(r)
from the continuity of the velocity at the hinge circle. The solution p(t)

to Eq. A.34 can be inverted to give
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with

ZP-R?
Blp) = P! (&TJTW) istd s -

By Eqgs. A.27, A.38, A.39, and A.42, we have

R-p(T)

B(p) P(7) b
- (R - dr +2 [P(T)-P,] d
Q(p) = R p)[ftb 4 /t‘ y

¥
B(r)
& f B ()i dr S U=V R=& 0 7oae O
th

Substituting this result into Eq. A.25 then gives

i P
#V(r,t) = —/’[;( ) (T) d7'+ -r)/ R- (pT(T) dr

tp
+ “RT'I) f [P()- P,] ar,
ty

0= = tbStStc.
The displacement is found by 1ntegrat1ng V(z,t)

applying continuity conditions at t = ty; the result is

t B(r)
pW(r,t) :[B (t-7) P(1) dT+(R-r)f %
t

(r)

t
Z(R e i) fb(t T IB(E) e ]d’T,

dr

(A.42)

(A.43)

(A.44)

(A.45)

with respect to time and

(A.46)



The upper limit of the interval of applicability of these last two equations
is t., rather than By 8 will be explained in the next section.

In summary, for the interval tp, = t = tmax, the hinge-circle
radius is found from Eq. A.34, and the plate velocity and displacement are
given by Eqs. A.45 and A.46, respectively, in the interior of the hinge band
and by Eqs. A.40 and A.41 in the exterior region. Performing the required
differentiation on either side of the hinge circle, we can show that discon-
tinuity conditions A.ll are satisfied; in fact, all the derivatives appearing
in Eqs. A.11 are continuous at the hinge circle. Properly speaking, p(t)
should be referred to as a plastic regime boundary in the interval
ty, = t =t a4 since the term "hinge circle" implies a discontinuity in
BV/Br at p. However, such a discontinuity occurs for t,5x =t = t. so
that p is both a hinge circle and a regime boundary in the latter interval.
Consequently, there seems little point in making the distinction in
terminology.

Since B(0) = tp, we have from Eqs. A.45 and A.46 that the veloc-

ity and displacement at the center of the plate are given by

tp
uVo(t) = f P(1) d7-+2[ [P(T)-Py] dr,
tb ty

t

t t:
uWo(t) = f (t-7) B(r) dT+2 f . (t-7)P(7) - Py] dr,
tb ty

£ S ES ¢t (A.47)

c. Interval tyax =t = t¢

Equations A.24-A.33 remain applicable for this time interval.
However, making the assumption that p(t) is still given by Eq. A.34 would
produce results which would violate discontinuity conditions A.1l. Since
o(t) now starts to move back toward the origin, the function Q(r) is known
for every position r = p that occurs during this time interval. Consequently,
Eqgs. A.45 and A.46 are still valid for the velocity and displacement inside
the hinge band, as are Eqs. A.47 for the central velocity and displacement.
We must still determine p(t) and the velocity and displacement outside the
hinge band.

38
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Letting r = p in Eq. A.45, we can write

t ﬁ(p) p(-,-)
KV p(t) S fﬁ( )P(T) dr +]t‘b R-p(7) =
P

(A.48)

I\
o
I\
o+
(¢}

th
[Fire-pan tma
t

B
o time gives

Differentiating Eq. A.48 with respect t

t
#_‘i _V& - dp L f P(T) dT
at \R-p &t (R- 0P Jp(p)

1 dEiidg
+ = [po-eeen 2]

_P(plp)) dB dp
R-p(B(p)) dp at’ (A.49)

From Egs. A.42 and A.43, we have

= e (P)p)) = A.50
P(B(p) = Rip®m-pp: FPRIPN =p (A.50)

so that Eq. A.49 becomes

v t
Co i P()
TS <R—p T dt (R -p)? fﬁ( )P(T)dT+ st (A.51)

Eliminating (d/dt)[Vp/(R - p)] between Egs. A.31b and A.51 then gives a
differential equation for p; this equation is, after some algebraic
manipulation,

t
j—f (R-p)R+3p) '//3 P(7) dT - P(t)(R +p)(R - p)* + 2PyR3 = 0. (A.52)

(p)



Observing that
dip [(R+p)R-p)*] = -(R-p)(R+3p), (A.53)

we are led to the identity

t

d dp

at | R+P)R-p) P(T) dT] = =iot (R<P)R+3p) P(7) 41
‘“[ '[B(p) o J

+P(t)(R+p)(R - p)? - 2PyR3 %g %tﬂ, (A.54)

where Eq. A.50 has been used. Differential equation A.52 can then be re-
written, using Eq. A.54, as

t
- % [(RHJ)(R—p)Z ‘[ﬁ(p) P(7) d'i] + 2P R’ [1 - j—ﬁ %o—] = 0. (A.55)

The integration of Eq. A.55 gives

t
-(R+p)(R -p)? f( P(7) aT + ZPyR3 [t ol —Na (A.56)
B(p)

where C; is an arbitrary constant. Att = tg,y4, 0 = Pmax and, from
Eq. A.42, B(Pmax) = tmaxs consequently,

C; = 0. (A.57)
The equation that determines p(t) is therefore
_[t 2PyR’[t - B (p)]

P(r) dr = ——_—(R+p)(R-p)z L =t

B(p)

(A.58)

The hinge circle motion ceases at tc when p = 0. Since, by
Eq. 42, B(0) = tp, the time tc is found from Eq. A.58 to be determined by
solving

t
f = Pt} dt = ZP‘},(tC - tp), (A.59)
%
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or, using Eq. A.19,

. A.60
f P(t) dt = Pp(tc-tp)- ( )
b
interpretation that the average pressure over

ti has the
Lo e at which the band

the interval when the hinge band exists is the pressure
is initiated.

The velocity distribution outside the hinge-band region will be
found next. From Eqs. A.29 and A.48, we have

t B(p)
B £ . DAENE
Vit = = -/p;(p) P(r) d7 + (R-1) - <R-p(7)> T

t
+ ——Z(P;\- z) ftb [P(1) - Py] ar,

Rl = = S (A.61)

This expression is inconvenient to use in determining the displacement in
the region. Alternatively, we can write

t

Vi(z,
V(r,t) = L;T) a7+ V(r,tyax): (A.62)
tmax
which, using Eq. A.29, becomes
it
8 dif Vg
V(l‘,t) = (R-r)'/t E<R—_p> drt V(I‘,tmax). (A63)

max

The integrand is given in Eq. A.31b, while V(r,tmax) is found from
Eq. A.40. An alternate equation for the velocity is therefore

t
WV(r.t) = (R-r>[f
I

2
H(T) dT + = / [P(T) - Py] dr
max ty
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where
3
* A T L 2 i
H(t) (R-p)(R+3p) [(R+2p) B (R_p)z], ot (=i (A.65)

The displacement in the region p(t) =r = pyax can be written

5 t
W(r,t) = f V(r,T) dT + f Wl es s by WL e (A.66)
tmax tr

where t = t. when p(t) = r. By Eq. A.58, t. is found from

tr 2Py Rty - B(r
]B( : P(r) dT = —L—(R fr[)t(‘;{ _ﬁr()z)]. (A.67)

In the first integral of Eq. A.66, r < p, so that V is given by Eq. A.45;
while in the second integral, r > p, so that V is given by Eq. A.64. Making
the substitutions for V, performing integrations by parts, evaluating

Eq. A.46 at t,,.., and using Eqs. A.65, A.31b, and A.48 lead to

t B) (.
e = @nf [ oy ars [F7 22D
t ty

T

»

t tas
+%/;yb (t-7)P(T) - Py] d'r}+ fﬁ(r) (t-7) P(7) ar,

p(t) =t = pmaxs tmax =t= tc. (A.68)
The displacement in the region pphax =1 = R can be written

£
W(r,t) = Vile,7) d7 £ Wit as): (A.69)
tmax
In the integral, r > p, so that V is given by Eq. A.64. Making this sub-

stitution, evaluating W at tiax from Eq. A.41, and performing some in-
tegrations by parts, we arrive at
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t tmax (t-7) P(T) £
pw(z,t) = (R- r){/ (t-7) H(T) dT *f R -p(T)
tmax tb
G P ] d
e f (t-7)P(7) - ledis
i
y
= n iR bt =gt (A.70)

pmax

Discontinuity conditions A.1l are satisfied in the interval
tmax =t = tc for V(r,t) given by Eqs. A.45 and A. 64, W(r,t) given by
Eqs. A.46 and A.68, and p(t) given by Eq. A. 58. Unlike the previous in-
terval, a discontinuity in aV/ér occurs at p, so p is properly called a

hinge circle. From Eqs. A.3lc and A.52, we have that

15
_1 dp P dT. (A.71)
R =Sodt

B(p)

r=pt

Since p decreases in this time interval and the integral is nonnegative,
inequality A.32 holds and the yield condition is not violated in the region

pE=Sre="R.

The velocity and displacement distributions at t. are, using
Eqgs. A.61, A.68, A.70, and A.60,

t

G ) = ﬂf;—_r) fC [P(T)—PY] d7e F= 0= 8L,
t

g

te
uW(r,t.) = (R-r) f (te-7) H(T) a7 + f R ) Bl) o
t t p T

il

+—f (te -7)[P(T) - Py] dr

tr
+f (tc -7) P(7) dT, 0 =Fr =ioeseid (A.72)
B(x) _ (Contd.)



" tm X -
pW(rte) = (R- r){f © (te-m) H( ar +f . (*t‘;{ _T) 50 0
t tb

p(T)
max
3 r'n (Contd.)
on .
+ E ‘/t\ (tc - T)[P(T) - Py] drp, s =r=aR (A.72)
b i
In particular, at r = 0, where ty = tc and ﬁ(r) = tb’ we have
te
uVo(t.) = Zf [P(T)-Py] dr, (A.73a)
ty
and
tc tb
UWo(t.) = f (te -7) P(7) aT + 2 f (te -T)[P(T) - PY] dr. (A.73b)
t (-
b y

d. Interval t.=t= te

Since the hinge band has disappeared, Eqgs. A.12, A.14b, and
A.l4c apply in this interval as they did in the initial interval ty =t =ty
After performing straightforward integrations with respect to time, we
have, using Eq. A.73a,

»

t
. 2R-1)
V(o £ )= g e g /;y [P(T)—Py] dr, (A.74a)
 +
PW(r,t) = Z(RR'” ft (t-7)[P(7) - Pyl dT
Vi

Di=ri= B, te=t=1 (A.74b)
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In particular,

t
) = zf [P(r) - Py] a7, (A.75a)
t
b
t tC
w9 = 2 [ (¢- 7Pyl ar - 2 ft (to -T)P(r) - P,] dr
ty b
t
(A.75b)

@
= ) BN d 7 Nt =t =R
B
The time t; is when the plate deformation ceases; from

Eq. A.74a, this is determined from

t

ffP(t) dh = Py(tf-ty), (A.76)

t
g

which is identical to Eq. A.21. This equation has the interpretation that
the average pressure during the deformation is the yield pressure.

Evaluating Wy(tg) from Eq. A.75b, using Eqs. A.60 and A.76, we
have, after some algebraic rearrangement,

2 2

: te 1 g
LuWo(ts) = B 2] ahi|| = = P(t) dt
| 4 VREAT

i b

te tC
22 '[y (t-ty) P(t) dt + ftb (t—tb) B(t) dt. (A.77)

Define I*, tX can, and P¥ by

# i .
tmean = 5t f (t-t,) B(t) dt, (A.78)
(Contd.)



P* - * (Contd.)
5 2tfhean (A.78)

Then, from Eqgs. A.77, A.78, and A.22, we have

e Py 1<I*>Z<l Py
Wo(tg) = -“TW [1-52-3 1) \z 7% )| (A.79)

5. Rectangular Pulse

The solution of Hopkins and Prager4 for a rectangular pulse
can be derived as a special case of the general solution obtained here.
Let P(t) be given by

Bt = P 0=t=t,
(A.80)
= 0, o I 7
Then,
tY = % 7 thax T 5(10) = W
IR=SIT* = P o tos
Pe o P: Pmax:
L »
P (A.81)
max
bg = o Pmax > Py’
4
and
1z
max
tC = 2P to, Pmax > Zpy.
v J

a. Load Range Py e o ZPy

The radial bending moment as given by Eq. A.l4c becomes

P 2 2
e SO PO ﬂr_HJrL_r_Z), i ey
R i ) R n R

y (A.82)
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placement are found from Egs. A.12 and A.16 to be

The velocity and dis

2(R-1) - 0 =it = to;

Ylrtl= —og (Ppax - Py) t 0
2(R-r

V(I‘,t) = ([J.R ) (pmaxto - Pyt)r to < t=ty,
R-r 2 ¢ L (A.83)

= o <
W(r,t) = -ﬁ— (Pmax— PY) tr; 0f ="t =fito;

and

R=r
W(r,t) = IR [Prmax

to(Zt-to)-Pytz], to < t = tg,

-

and the final displacement at the plate center is found from Eq. A.23 to be

P22 P
B Lt g - B A.84
Wo(tf) = f"'p 1 5] J ( )
y max,

hE oo diRange Eml= ZPy

Att = 0, a hinge band forms instantaneously in the region
0=<r= pPmnay By Eq. A.34, Prpax is found from

PESRE
(R +pmax)(R'pmax)2 = = L (A.85)

max

For 0 = t =t p(t) is determined from Eq. A.58 to be given by

p(t) = Pmaxr 0= t=to

(A.86)

, 2P Rt
R+p)R-p)2 = =—L—, to=t=t_.

f
pmaxto <

From Egs. A.31c and A.86, we have for the radial bending moment in the
repranipi= =R

& & R(r +pmax)(r "pmax)3
)= 0=t=its (A.87)

MO r(R+pmaX)(R _pmaX)3 ’ (Contd )
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and
M (R - r)(R’r +R%r? - Rr® - 4R 0* + 3p*
& p +3p%)
Te——E i t o 2% Contd.
M, r(R+3p)[R-p)° 63 - : (c::s?;
For 0 = r = p, the velocity and displacement are given by Eq. A.45 and
A.46 to be
p ~N
t
B N je gy,
0
V( t) 5 maxto roegs P
r,t) = T, o= t=t,,
P e L
e . D=t (A.88)
2
and
P to(2t - to)
max -0 0
- =t=
W(r,t) 2 , b =t=t, )
while outside the hinge band (p = r = R), from Egs. A.61, A.68, and A.70,
E
3 ey
V(r,t) = ===t 2X 0 =t=t,
R - Pmax /=
P to
R-r max
V(r,t) = —— —=— t, =t=?%,
(=) = R om ~ » 8 ¥
e
R = 2 e s
R - Pmax
2
- +
W(r,t) = max r)[(R+p)(R-3p)+ (Rz r)‘] 1, L (A.89)
(R+ Prax)(R - Pmax)
s g, th=t=t,
and
2(p - TR+ -3
g P_.to®R-1) [2p  (Rtp ) (R+p)(R-3p)
o = LN e ’
2L (B ma (R 'Pmax)Z
BeER yEtst,.
T
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In particular,

V(r,tc)

Wiz,t.)

and

W(r,te)

and

V(r,t) = E(_u (P

R-r1
= _/_L—R_ PmaxtOy
P t2 |P £2 r:)
_ _max —max o = =) 1|, M= o= @ ,
T [Zpy A SRR L (A.90)

3 in et

Pmaxtg (R +Pmax) tPmax - oy

- ——— (R-71) 2 | nax = Tassvas
2.u (R*Pmax)(R'pmax)

.

For tc =t = tg, Egs. A.l4c and A.74 give

M 2
: {30 REr <1+_1;_r_2),
R R

=P t),
LR maxto - Fyt) > (A.91)

In particular,

W(r,tg)

W(I‘,tf)

and

W(0,tg)

W(r,t) = TR e Py(t+tc)](t— te) + Wiz, t.).
_Pmax°lipmax (3 L r_z'i) il [ =i =170
- 2 > 2 el E =r = Phayx
2 Py RERETOR
2 2 2
N Prhax' o Pmax max >
T 2uP Z AR R RZ |’ Pmax=* = R, L
o (A.92)
2 2
_ Pmaxh (1 s )
7R O

A

The equations of this section are the same as those obtained by

Hopkins and Prager except for the expressions for W(r,t) for ty < t < tg
which are not given in Ref. 4.
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6. Pulse That Attains Its Maximum Instantaneously

Perzyna® treats loads characterized by
t
f P(T) dr = tP(t), (A.93)
0

i.e., the pressure attains its maximum instantaneously and decays there-
after. He refers to these loads as "blast" loads and calls the general
loading of Fig. la an "impact" load. His results can be obtained from the
"impact" -load solution derived here by taking

ty =ty = thae = B() =0, (A.94)

which eliminates many of the integrals in the expressions for the velocity
and displacement. Perzyna solved differential equation A.52 numerically
for the hinge motion for two particular load shapes and did not obtain the
general closed-form solution Eq. A.58.
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APPENDIX B

Solution for Reinforced Circular Cylindrical Shell
for General Pulse Shape

4sc Introduction

The dynamic plastic deformation of a rigidly reinforced,* circ;llar
cylindrical shell subjected to a uniform pressure is treated by Hodge.
He obtains closed-form solutions for pressure pulses that rise instan-
taneously to their maximum and then decay monotonically and also for
more general pulse shapes if no hinge-band formation occurs. His analy-
sis will be extended in this appendix to include the case of the general
pulse shape of Fig. 14 where a hinge band is produced. The method of
solution is the same as that used in the analysis for the circular plate in

Appendix A.

2. Statement of Problem

Consider the reinforced circular cylindrical shell of Fig. 2b having
radius A, thickness H, distance 2L between reinforcements, and surface
density (. The usual shell-theory assumptions are made so that stress
distributions across the shell thickness are replaced by their resultant
direct stresses, bending moments, and shears. Assume that the shell
material is rigid, perfectly plastic, with yield stress Oy- The problem
can be formulated in terms of only two resultants: the circumferential
stress resultant Ny and the axial bending moment resultant My. The
equation of motion is

BZMZ Ng W
32 +T+P:,u§z—, (B.1)

where z is axial position, t is time, P(t) is the applied external pressure,
and W(z,t) is the radial displacement, considered positive inward. Only the
typical half-bay 0 = z = L need be considered.

. The yield condition is taken to be the limited interaction condition
of Fig. 3b, i.e., a rectangle with vertices (¥M,, 1Ny), where

Mo = § oyH?%, N, = oyH. (B.2)
The flow rule states that the flow vector, with components proportional to

N2 2 ‘ .
3d V/Bz and -V,. where V is the radial velocity, is in the direction of the
outward perpendicular to the yield locus at the yield state (M, N¢).

* e s
Nonrigid reinforcements are treated by Nemirovsky and Mazaloy, 0



The three plastic regimes occurring in this problem are:

4 v
Regime A: M, = -M,, Nqb = =N, g = O aN= 10 (B.3a)
. ) >V
Regime AB: -M; < M, < M,;, Ny = -Np, o O Ve=0 (B.3Db)
z
3%V
Regime B3 Mz = Mo, Nd) = -No, ? =0, V=0. (B3C)
z

During the entire cylinder deformation,

N¢ = -No, ==L, (B.4)
At the rigid reinforcement, the cylinder is in Regime A and

V=WS=0, (B.5a)

M, = -M,, atz = 0. (B.5b)

When there is no hinge band, the center of the unsupported span is in
Regime B; moreover, because of symmetry, there is no shear force. The
boundary conditions are, consequently,

M, = M,
and » (B.6)

o 0 %

3 = atz = :

The remainder of the half-span is in Regime AB, so that

2V

a—i Ri= 0 for 0N iz <ol (Bii)
z

=8,

“Mg< M, < My,

If a hinge band appears in the region {(t) =z = L, the entire band is in
Regime B; therefore,
oM, v

M, = M,, 3. =40, v&— =0, V=0forl

IA
N

I\
I

(B.8)
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In the remainder of the half-span, which is still in Regime AB,

2
_MO<MZ<M0,—a—V_O,VZOforO<z<C. (B.9)

dz*

The initial conditions of the cylinder motion are

V(z,ty) = W(z,ty) =40 (B.10)

where ty is the time when the yield pressure is first attained.

If no hinge band occurs, we must solve differential equation Bl
subject to initial conditions B.10 and boundary conditions and restrictions
B.4-B.7. If there is a hinge band, conditions B.6 and B.7 are replaced by

B.8 and B.9.

The conditions on permissible discontinuities at the hinge circle
t(t) are similar to those given for the circular plate and will not be

discussed here.

3. Solution for Pmax = Pb

From the limit-load ana.lysis,Z the yield pressure Py is

N AH
PY = Py <1+—L—2>, (Bll)
where
(e =T
1Sk e g
A (B.12)
Take
V(z,t) = Vq(t)=
L\ (B.13)

xheie V; is thfe inward radial velocity at the midpoint of the span; V then

difefe s thfz requ1r¢?ments stated in Eqs. B.5a and B.7. The integration of
erential equation B.l twice with respect to z gives, using E (ES1S

Bid, B.12, and B.2, : e

22 = dv
Mz(Z)t) = gk = P(t)] - +IZ—L _L + Ci(t)z = Cult)s (B.14)
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Applying boundary conditions B.5b and B.6 results in

C; = - %(py‘Po)Lz,

L
G =7 [P-Po+3(Py-po)].

avy, 3(P-P)
dt

g 3

2

and

MZ

= .4LL (P-Py) z(L-2)?+

(B.15a)
(B.15Db)
(B.15c)
4—1L (Py - P aszrf-2). (B.15d)

The solution to differential equation B.15c is, using Eqs. B.10 and

t
VL(t) = Zi# j; [P(T)-Py] dr.

¥

(B.16)

Integrating Eq. B.16 with respect to time, we obtain

3 t
W) = 5 [ (e-m)IP(r)-
t
y
and
W(z,t) = EL. W(t),

where Wy is the displacement at z

P_] dr

N

b4

= L.

(B.17)

Since M, is a cubic in z and Eqs. B.5b and B.6 are satisfied, the
condition that IMZI = My in the region 0 < z < L is equivalent to

requiring

oM,
oz

>0atz =0

(B.18)
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and
oM, <0atz = L. (B.19)
aZZ
From Eq. B.15d, inequality B.18 implies
P(t) > 4Po - 3Py, (B.20)
which by Eqs. B.11 and B.l12 means
(B.21)

TA < 3AH.

As in Ref. 2, it will be assumed that the problem configuration is such that
inequality B.21 is satisfied. Inequality B.19 is equivalent to, using

Eq, B.1bd,

P(t) < S - 2P,. (B.22)

Define

Py = 3P, - 2P, (B.23)

X

as the load at which a hinge band is initiated at z = L. The condition that
P(t) does not produce a hinge band is then

P =Pp. (B.24)

The plastic deformation ends at time tf when the velocity vanishes.
From Eq. B.16, tf is found from

tf
f P() a7 = P (tg-t ). (B.25)
t

y

Using definitions A.22 for I and B
mation from Eqs. B.17 and B.25 as

32 P
W(z,tf) S Al (1 __y) £
y

we then obtain the final plastic defor-

1P P,/ L
and
chi 1=
Wi (t =t __Y
L(tg) 3T, (1 Pe>' (B.26)



airSolution foriBEds > Py

a. Interval 1:y SEt=ty

The solution given by Eqs. B.13-B.17 is applicable up to time
ty, when the pressure first reaches Py and azMz/azZ = 0atz = L. At
this time, a hinge circle {(t) separating the region of the cylinder in
Regime B from the region in Regime AB begins to move out from z = L.

b. Interval ty =t=toax

Consider first the hinge-band region where M, = M,. Differen-
tial equation B.1 becomes

L N (B.27)

The solution of Eq. B.27 is

L
WV (z,t) = f [B(r)-Po) ar + =), L=z=L, (B.28)
th

where ((z) is determined from the continuity of the velocity at the edge
of the band. Letting

Ve(t) = V(E(t).t), (B.29)
Q) is found from

t

AUE) = pvy -f [P(T) - Po] aT, (B.30)
%

where t is viewed as a function of { rather than the converse.

In the region 0 = z = {, take

V(z,t) = Vp(t) ﬁ (B.31)

The double integration of Eq. B.1 with respect to z results in

A%
M, = (P-P) ZTZ + #Tzs % (?C) + Cs(t)z + Cylt). (B.32)
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= i i i ents
A lymg boundary condition B.b5b at z = 0 and th cont1nu1ty requu‘em
PP

that
oMy (B.33)
= et M) s =
M, = Mo, 75,
we arrive at
1 2 (B.34a)
= -— (P_-Py) L%,
C4 4( y 0)
1 2 2 (B.34b)
Py i + 3(P_ - Py) L7,
Gas= at [(P-Po) L ( y o) L7]
v
b (——) = '—3—3 (P-Po) £ - (P - Po) i e (B.34c)
E S\ 2ut v
LY (07 +3¢% - 2%)(Py - Po)
Z 2 _ =
= _2)3(P-Py) + — (-7 +3°z-z")(P )
M, = % (- 2P Po) + o5 ( :
Oi=z =& tp=t=1(. (B.34d)
The condition that M, should not exceed M, in the vicinity of
z = € requires that
3'M
2 =<0atz = - (B.35)
022

Using Eq. B.34d this is equivalent to

2 < 2 =
(P-P) P =3(P -Pp) 17, f =t=t. (B.36)

Following a similar line of reasoning to that employed in the circular
plate problem, we will assume that the equality in Eq. B.36 holds while
the pressure is increasing. The resulting solution can then be shown to
satisfy all the requirements of the problem. Accordingly, we will take

3(Py - Po)
i =ae) B0 By by =tst o, (B.37a)
and
3(Py— Py)
AR B (B.37b)



b5

Using Eq. B.37a to simplify Eqs. B.34d and B.34c gives

0

M, - z)
12 (—GCS_) (B.38a)
and

a (vc) [y

Et- T = E, m, tb == tmax. (B.38b)
Equation B.38b can be integrated to give
v t Ve(ty,)
L 1 f [ 3/2 £
—_ 0 — P(1) - P)*/? dT + : B.39
e ; ) e

Since Vc(tb) = Vp(ty) and £(ty,) = L, we have from Eq. B.16 that

Vc(t) e {ftb [B(@)eies] e dr

%/—?of P ] dT} (B.40)

so that, using Eqgs. B.31 and B.37, we arrive at

V(z,t) =

r'“

{mf vens ke
g 0

th
+%/t‘ [P(T)-Py] drp,

ot )

fss=sl Chstst . (B.41)

The displacement is found by integrating the velocity from ty to t and
making use of Eq. B.17 to calculate W(z, tb) the result is
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The function (z) can now be determined as follows:
tion {(t) given in Eq. B.37a can be inverted to give

BRE(E)R D=6 =L o5 b =iti=at
where
LZ
B(t) = P! [P0+3(Py - Py) C_Z} Pp = P(t) = Ppax.

Substituting from Eqs. B.40 and B.43 into Eq. B.30, we arrive at

g

(B.42)

The func-

(B.43)

(B.44)

B(&) t
e e P A
Q) = T { 3(PY-Po) '/t; [P(T) - Po]*? a7 + - j; [P(T) - Py] dT}

y

max’

(e)
- [ -rdar, L=g=¢
%

Using this result in Eq. B.28 then gives

t

t
LV (z,t) = f [P(T) - P ar + 2—; [b [P(T) - Py] dr

B(z) ty
- B(z)
B

(B.45)

(B.46)



Integrating the velocity from ty, to t and using Eq. B.17 to find W(z,t,),
we obtain

t
uW(z,t) = fﬁ(z) (t-T)P(T) - Py] dnz—i[b (t-T)B(r) - P ] ar
Vs

B(z)
Ik w85 ¥ _p.13/2
- “ 3(Py~Po) /th (t - T)[P(T) - Po]*/“ dr,

=l =T ty St=t_. (B.47)

The upper limit of the interval of applicability of Eqs. B.46 and B.47 is
tes rather than tmax' because the reversal of direction of the hinge-
circle motion does not affect the velocity distribution, and hence the dis-
placement equation, inside the hinge band.

As in the plate problem, all the functions appearing in the dis-
continuity relations are continuous at £ in the interval t, =t =ty 5. Con-
sequently, the solution obtained by making the assumption that Eq. B.37a
holds is correct for this interval.

Since B(L) = t,, we have from Eqs. B.46 and B.47 that the ve-
locity and displacement at z = L are given by

3 R
Vi(t) = [P(T) - Po] dT + = [Bl@-Pd
MV1, lb 0 > j;y y

t t
uwy (t) = f (t-7)P(T) - Po] dr +% fb (t-7)P(T) - Py] dr,
t
¥

(B.48)

.~ <
(.2 Interval tmax =Et=s tC

Equations B.27-B.36 remain applicable for this time interval.
However, making the assumption that {(t) is still given by Eq. B.37a would
lead to results that would violate the discontinuity restrictions. Since the
hinge circle now starts to move back toward z = L, it passes through
previously occupied positions for which () is known. Consequently,
Eqs. B.46-B.48 remain valid for the velocity and displacement inside the

hinge band.
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= ¢t in Eq. B.46, we can write

Putting z
th
Vg(t) l/t [B( gl - (r)-P,ldT
L= =5 T) - PoldT + [P(T)- Py
GOt ey
B(£)
1 3/2
e T P P da (B.49)
3 L‘\/3(Py'Po)'[b el
Differentiating with respect to time then gives
d Kg) L 1
= === [P(7) - PoldT + & [P(t) - Po)
o dt(e; g2 dt Jgp) ° 3 g
@ ac [y - P(A(E)) | [P(E(L)) - P i
= t{ ¢ & LV3(Py-P,) J B
From Eq. B.44 we have
P(8(c)) = Po + 3(Py - Po) ? (B.51)
so that Eq. B.50 becomes
t
(B.52)

Vv
H%(—f) = Q—Lj—fv/p;(g) [P(T) - Po] a7 + —é—[P(t)-po]_

Eliminating u(d/dt) (VC/C) between Eqs. B.34c and B.52 results in

(7
(B.53)

jf o) [P(T) - Po] a1 + Qz(p Sl 3LZ(PY e

The solution to Eq. B.53 satisfying the initial condition that ﬁ(gmax) =

tmax 1s

t
e fB(C) [P(7) - Po] dT = 3LA(Py - Po)[t - A(L)],

tmax =t = tc. (B.54)



Equation B.54 gives the hinge-circle motion for the time inter-
Nal tynay = t = tg. The motion ceases at t. when ﬁ(tc) = L; since
B(L) = tp, tc is found from

tC
f By = Pt - th). (B55)
th

As in the plate solution, the average pressure over the interval of the
hinge-band motion is the pressure at which the band is initiated.

The velocity distribution outside the hinge band will be found
next. Using Eqs. B.31 and B.49, we have

t
V(= t) = if [P(T) - Po] dT
B

* Bi)
B(L)
z
+ f [P(r) - Po]? ar
LV3(Py - Py) Jy,
b
.3 [P(T)-P,]dT, 0 =z = == (B.56)
oL y ) ==l e = = :
t
g
An alternative expression which is easier to use to determine the displace-
ment can be derived by considering 5
t
da [V
Nl bl 20 f — (TC) aT + Vi(z\tmax): (B.57)
tmax

which is obtained by integrating Eq. B.31. The integrand is given by
Eq. B.34c and Vi(z,trax) is+dound from Eg. B.4l. Making these substitu-

tions, we arrive at

z|3 L i

Viz,t) = 1‘ E[ [P(T) -Po] ":—(;_') - (Py-Po) 23(7‘)} dr
b

[P(T) - Po]3/2 dT + —32- f [P(r) - py] dar|,
t
¥

g e R A A P (B.58)

&
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The displacement in the region {max = z = £(t) is found from

t t
W(z,t) = % V(z,T) dr +f V(z,7) 47 + W(z,tmax) (B.59)
t

tmax z
where t = t, when {(t) = z. By Eq. B.54, t, is found from
tz
z? f [P(T) - Po] dT = 31}(13y - Po)[tz - B(z)]. (B.60)
B(z)
In the first integral of Eq. B.59, z > { so that the velocity is given by
Eq. B.46; in the second integral, z < { and V is given by Eq. B.58. Making

these substitutions, doing the integrations, evaluating W(z,tyax) from
Eq. B.47, and using Eqgs. B.34c and B.49, we arrive at

t
EW(z,t) = 2% (t-T){[P(T)'Po] T e CI;—(Z'T)} ar
tZ

t

e R
by [P(T -Py] dr
y
: B(z) 58
it =) 2T =N P
LV3(Py -Po) ftb iR )n .
tz
™ '/ﬁ;( | (t - T)[B(T) - Py] ar, e =l = () ==
>
(B.61)
The displacement in the region 0 = z = ;.4 can be written
12
W(z,t) =

V(z,7) dT + Wiz b (B.62)

tmax

In the integral, z < ¢ so that V is gi ; i
gy e L s given by Eq. B.58; W(z,ty,,4) is evaluated

: g these substitutions into Eq. B.62 i
L . B and performing the



1)

t 3
Wzt = 3= ft (t-7) {[P(v)-polc(%) - (Py-Py) C,L(T)} ar
max
3z b
+ 3T ! (t- N[P(T) - Py] dr
¥y

z tmax 3ﬁ
+ m ‘/t‘b (t = 7)[B(7) - Py] a7,

S LR R I (B.63)
The appropriate discontinuity conditions are satisfied by the

solution in the interval t .« =t = t.. From Eqgs. B.34d and B.53, we
have that

*M,,
oz2

t
1d
S Etgf [P(T) - Po] d. (B.64)
z=(- B(C)

Since [ increases in this time interval and the integral is nonnegative, in-
equality B.35 holds and the yield condition is not violated in the region
== = L.

The velocity and displacement distributions at t. are, from
Egs. B.56, B.61, B.63, and B.55, .

) 2= [C[P(T)-P]dT 0=<z=L
e 2L e ==

ty
t 3 tp
3 = L L 3
EW(z,t.) = Z—i/[‘ (tc-‘r){[P(T)-Po]c(—T) -(py_pO)CTT)} dr + ﬁ‘/: (tc - T)[P(7) - Py] ar
4

z

z

A(z) 3/2 tz
f (te - T)[P(T) - Po)”" " dT + f (te - T)[P(7T) - Py) dr,
B(z)

bmax <2 = L, | (B.65)
and
3z [fe L L}
KW(z.te) = == j;max (te - T){[P(T) - p"]tj(_T) - (Py -Po) I;TT)} dr
& t:b - p i oy [t :"“ (te - TIP(r) - o] ar,

0 S 2z S lwnes
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In particular, at z = L where t; = tonand B(z) = tp, we have

tC
pvp(te) = %f [P(T)- Pyl dT (B.6ba)
b
and
t
pW (te) = %fb (te - T)P(T) - Pyl dT
t
y
[ c - T)P(T) - P] dr. (B.66b)
t

d. Interval tc =t = tg

Since the hinge band has disappeared, Egs. B.13, B.15c, and
B.15d apply in this interval as they did in the initial interval ty =t = tp.
After performing straightforward integrations with respect to time, we
have, using Eq. B.66a,

32
/JV(Z,t) = E [P(’T) = PY] dT (B67a)
t
W
and
3z t te
pW(z,t) = S+ ft it liBly)- 2 T e f (te ~ THP () = d'l}
y ty
SROWHEPER) S0 == te =t st (B.67Db)
In particular,
pvp(t) = ift [P(1)-Py] dr
1 2 4 Y (B.68a)
and
3 te
= 7[ [Pe(T) - =] o = %f (te - T)[P(T) - Py] dr
b

b (B.68b)
i {tc=n)[P(7) — ol dr et =R
'



The time ty when the deformation ceases is determined from
Eq. B.67a to be given by

be
f P(7) dr = Pylt;-t,),
t

(B.69)
y

which is identical to Eq. B.25. As in the plate solution, the average pres-

sure during the deformation is the yield pressure.

Evaluating WL(tf) from Eq. B.68b, using Eqgs. B.23, B.55 and
B.69, we have, after some algebraic rearrangement,

2
v L2
LW (tg) = % [f P(T) d'r] - -% /t‘ (T- ty) P(T) dT
t
¥

the final displacement can be written

IZ P i 4 P B
B

Using definitions A.22 and A.78 for I, P, I*, and P}, the expression for

(BL7l)
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APPENDIX C

Beam Subject to Transverse Dynamic Load of General Pulse Shape

1. Introduction

The dynamic plastic deformation of an unsupported beam subjeclted
to a concentrated transverse force at its center is treated by Symonds.
He exhibits numerical results for the rectangular, triangular, and half-
sine pulse shapes shown in Fig. 1b, le, and 1f. Additional results for these
shapes and for the linear and exponential decay shapes of Fig. lc and ld were
obtained for this report. The derivation of the governing differential equa-
tions is divided between Refs. 1 and 11. Accordingly, the important
features of the derivation will be summarized here.

2. Statement of Problem

Consider the free-free beam shown in Fig. 2c having length 2L and
mass Y per unit length. The beam material is assumed to rigid, perfectly
plastic with yield moment M,.

Under the action of a concentrated force F(t) at its center, the beam
may proceed through several different types of motion depending on the
pulse magnitude and shape. These types of motion and the corresponding
governing equations are discussed below.

Let v(x,t) and w(x,t) be the total velocity and displacement of the
beam and V(x,t) and W(x,t) be the velocity and displacement produced by
plastic deformation, all measured positive in the direction of the force,
Then,

V(x,t) = v(O,t) - v(L,t)
and . (& 11)
W(x,t) = w(0,t) - w(L,t)
Flonsequently, w(L,t) is the rigid body motion of the beam, while W(x,t) is
1t§ plastic deformation measured from a line through the ends of the beam,
with W(0,t) being the maximum deformation. We will write
vo(t) = v(0,t), Sl = AGL )

wo(t) = w(0,t), wi,(t) = w(L,t), (c.2)
and

"

Volt) = v(0,t), Wy(t) = W(O,t)..



a., Phase 1. Rigid Body Motion

Until and unless the maximum bending moment in the beam
reaches the value M, at time ty, the beam moves as a rigid body such that

Et) = wpltl oV et) = 0

and (G.3)
SRt = wolt), Wixt) =0, 0=t = ty
From Newton's equation of motion, we have
dv
F(t) = 2yL —2,
(t) = 2yL — (C.4)
so that integrating gives
1 t
ikl = Z_‘yL 153 o) s
0
and (c.5)
1 £
Wo(t):m/o‘ (t-T)F(T)dT, 05t5ty

The bending moment in the right half of the beam is given by,
using D'Alembert's principle,

Mixt) = - 3y(L-x) 52, (C.6)

or, using Eq. C.4,
s
AR e {C.%)

The maximum magnitude of the bending moment is at the center of the beam.
Since the time ty is when yielding first occurs,

M(O,ty) = -My,

(c.8)
so that, from Eqgs. C.7 and C.8,
_ 4M,
Fyi5 Tra
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b. Phase 2. Rigid Body Motion Plus Rotation about Center Plastic

Hinge

At t, a plastic hinge forms at z = 0 and a rotation of the two
rigid halves of the beam about its center is added to the rigid body motion.
Only the right half of the beam will be considered here.

The equations of translation and rotation of the right half of the

beam are
dv
IF = L—
dt
and , (c.10)
1 dw
iFL - = —yL3 —
% i

where & is the angular velocity of the right half, measured positive clock-
wise, and v is the velocity of the center of mass of the right half. Inte-
gration of Eqs. C.10 gives, using Eqs. C.5 and C.9,

: t
Ve = ml F(T) 4T,

(S, 011

o
s Wft [F(7) - Fy] ar.
¥
Since
Vg = Wk %wL
and
AL, = U s 2 wL, (C.12)
we have
Vo(t) = oL 1
SPONT
sy R L R i
ty L
and . : (€.13)
3 t
Wo(t) = —
oft) NE . (t-T)[F(T) - Fy] ar
¥




If no other plastic hinges form, the plastic deformation of the
beam is entirely in Phase 2. The time tf when the plastic deformation ends
is found from

Volty) = 0, tr > ty. (C.14)

By Eqgs. C.13 and C.14, t; is determined from

"
ff F(r) dT = F(ts-ty), (C.15)
ty

so that, as in the circular-plate and reinforced-circular-shell problems,
the average value of the load during deformation is the yield load. Define
impulse I per unit length, mean time t,.,,, and effective force Fe of the
pulse through

. )
= f B(r) dT,
Ay
3. fe
tmean = Tf 3 tY) F(7) a7, \ (EL 16
ty
and
i .
Fo = —.
© 2tmean Y

Then from Eqgs. C.13, C.15, and C.16, we have for the final maximum
plastic deformation of the beam

31 43 o
Wo(ts) = ZVLFY <1‘ Fe>' (CL17)

The bending moment in the right half of the beam is found by
again using D'Alembert's principle to load the beam with inertia forces.
The result is

g st e 880 L a0 B2 c.18
M(x,t) = -E‘y(L - x) T + 13 v(L - x)*(L + 2x) T ( )
or, using Egs. C.10,
(L. x)” (C.19)
M(x,t) = 5 [2xF(t) - (L +2x) Fy]' Hlle)
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The moment is a minimum a

(F - F,); consequently, it has a maximum at some point x
s the value M, at some time tp, then another

zeros. If M(x.,,t) reache

1
tx = 0 and is zero at x = L andx = ELF/

m between the

plastic hinge will form at xm- Differentiating Eq. C.19 gives

oM L -x

dx | 212

[(T=53) AR (L )E 3xFy],

so that

o il
m T 3(F-Fy)

Therefore,
(2T A
t) = —
Mxmet) = Tog(F - Fy)2
Let

M(é h’th) = Mo,

so that a hinge forms at x = £} at time t,.

of,fusing Eqs. €.22, €.23, and C.9,

(C.20)

{ca2l)

(G222}

(Ci23)

Then Fh[:F(th)] is the solution

3 2 2 e

8Fy - 63FYFh o lOSFYFh - 54FY = 0, (C.24)
while

. FpL

= m (C.25)

The numerical solution of cubic equation C.24 yields

Fh = 5.7218Fy,

€, = 0.4039L.

(C.26)

B e F}, outer hinges form initially at x = iEh.

Phase 3. Rigid Body Motion Plus Rotation about Center and

Outer Plastic Hinges

b In Pha..se ;’>. the beam is cofnposed of four rigid sections which
rotate about plastic hinges at the origin and *£(t) and which also translate

as a unit with velocity v (t)



Again considering the right half of the beam only, take w, and
Vco as the angular velocity and velocity of the center of mass, respectively,
of the beam section 0 = x = £, and take ®; and v¢; as the corresponding
quantities for the section £ = x = L. The equations of motion are then

1 dveo W
iF f
2 o
1 1 3 dwy
+=F - = — —_—
. e NS TR LTI
d
0 = y(L-¢)—=<, > (c.27)
dt
and
o AT _ey3 doy
M, = IZV(L £) =t :
Since
&
dve _ dveg 1 ¢ dwy
dt ~  adt 2]
and x; (Cc.28)
dvy, _ dveg; _ 1 = dw,
AT e 5 (L-€) dt ;

the differential equations that determine the shape of the plastically de-
formed beam are

dv, _ 2F _ 3LF, 3LFy

LT R T T

By aAEe 8
ST T r_;z &3 2

dw, _ 3LFy e (c.29)

Y& T (-er’

and
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However, the hinge position £(t) is still an unknown quantity and must be

determined before Egs. C.29 can be solved.

The discontinuity in the acceleration av/at across a moving

plastic hinge at £(t) is shown in Ref. 11 to be given by

P B R L2 0 (C.30)
O gy B |g [E e %le
Since
A E- e+ %iwo
and
FlE = ot (C.31)

we find from Egs. C.30, C.27, and C.29 that the differential equation for
E(t) is
dae 1 3L 3FyL F

= Yo ¥ =l
dat  y(we - wy) P 2(L-£) € ! (G.32)

The set of coupled nonlinear differential equations C.29 and C.32 is easily
solved on a computer to determine the plastic-deformation history.

Equation C.32 can be integrated in closed form; the result is
5 t
vEA(3L - 2€)(wo - w;) + yL*w, = 3L ft [F(7) - Fy] iz (G335
Vi

which can be verified by differentiation, using Eqs. C.29. Equation C.33
can be derived directly from momentum considerations.®

The angular velocities g and w; are equal at t, when the

outer plastic hinge first appears and again at t. when £ disappears. From
Eq. C.33, we have that

3 t
w(te) = 2 ftyc [F(7) - Fy] ar. (C.34)

After tc, differential equations C.10 are applicable again. Consequently,



w(t) = é j:: [F('T)-Fy] dr + w(te)
(Cc.35)
o N % ey
= L2 fty [F(T) Fyldr, tc =t =t

The plastic deformation stops at ty when w = 0; t; is thus found from

ty - ty), (C.36)

tf
jt' FAT) dT = Fy(

b

which is identical to Eq. C.15. Therefore, even though differential equa-
tions C.29 cannot be solved in closed form, the deformation interval can
still be determined, and the form of the equation is unaffected by the occur-
rence of outer hinges.

The bending moment in the inner portion of the beam in Phase 3
is given by

1 2 dveo dwy
= - = (€ - — t = —_— = (GR35
MGct) = My - 3 (6 - x)F S50 4 ofe - )+ 2x) O (c.37)
in the outer portion,
da)
M(x,t) = ——'y(L— x)? d;’tl + —ly(L x)?(L + 2x - 3€) ‘ (c.38)

Using Eqs. C.27 and C.9, we have

x(E-x)* F L(£3 - 6€6x% +4x3) Fy
22 : 4¢3

M(x,t) = r 0 =x = £, (C.39a)

and

L(L - x)%(L +2x - 3€) Fy. g =x =5 (C.39b)

M(x,t) = aL- €)3

It is easily verified that
M(0,t) = -My, M(£,t) = Mg, M(L,t) = 0,

(C.40)
M

Sx Hiat . x = £,L.
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d. Phase 4. Outer Hinge Becomes a Hinge Band

If, during the Phase 3 deformation,

(C.41)

ox2
a hinge band would begin to form at £. This is because at slightly higher

loads Eq. C.39a would predict a saddle point at £ with M exceeding M, to
the left of £. By Eq. C.39a, we have that Eq. C.41 is equivalent to

F(t)e(t) = 3F, L. (c.42)

Phase 4 motion does not occur for the load ranges presented in the results
of this report (see discussion in Ref. 1).



10.

11.
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